A screening to study the effect of various smoke solutions and cold-moist stratification on *Carex*[©]

D. Schoemaker, S. Ebelhar and D.L. Sanford^a

Department of Plant Science, The Pennsylvania State University, Berks Campus, Reading Pennsylvania 19610, USA.

INTRODUCTION

The research was conducted to serve as screening of several *Carex* species to determine the effect smoke and cold-moist stratification had on germination.

Since early hunter-gather society, humans have observed that after a forest fire, small, prairie plants, are one of the first species to germinate. The rejuvenation in growth is known as secondary succession. For centuries, this process has been suggested as a natural occurrence, however, current research shows that species react to fire due to internal genetic signaling through the protein MAX2 and smoke isolate compound karrikin.

MATERIALS AND METHODS

The current research looked to screen for the effect that liquid smoke and cold-moist stratification has on nine different *Carex* species. Each *Carex* species was tested with a 30, 60, and 90 day cold-moist stratification periods and four different smoke groups, plus a control of deionized water. The species *C. vulpiniodea* and *C. bicknelli* had germination percentages greater than 50%. All other species percent germination was less than 50%. Within *C. vulpiniodea* and *C. bicknelli*, cold-moist stratification assisted in increasing the percent of germination better than any of the smoke solutions.

Each *Carex* species was rinsed in 10, 5, 1% bleach, and deionized water before being transferred to cold-moist stratification. Using HEPA filter environment, each *Carex* species was transferred into Petri dishes containing a filter paper and three milliliters of deionized water. The seeds were then placed into a cold room at and removed after 30, 60, or 90 days. The cold room temperature ranged between 1.6 and 4.4°C, and contained no light. A total of 800 seeds per cold treatment were transferred for each species.

A 2, 5, and 10% Haddon House Hickory Smoke liquid smoke solutions were made. Also, a solution of Super Smoke Plus from Cape Seed Primer was made from smoke infused filter paper. Finally, a control of deionized water was tested. After seeds were removed from the cold stratification, 160 seeds were transferred to each smoke solution for a 24-h soak at 21°C.

After soaking the seeds were transferred to Petri dishes containing filter paper and 3 mL DI water. There were eight trials per experimental group. Each Petri dish contained a total of 20 seeds. Petri plates were placed in a growth chamber set at 23°C during a 12-h light photoperiod and 15°C dark period during each 24-h cycle.

RESULTS

The number of seeds germinated per group per Petri dish was counted on a weekly basis for a total of 3 weeks. The seedling was considered "germinated" at the first sight of a root radicle. The percent germination was collected once a week for a total of 3 weeks. Results are presented in Table 1.

^aE-mail: dls30@psu.edu

Table 1. Percent germination for selected *Carex* species with 0, 30, 60, 90-day coldstratification followed by a 24-h soak in a smoke solution. The table shows the percent germination, smoke group, and cold-stratification period for each of the *Carex* species studied during the screening process. All numbers in parentheses after the species name represents the cold-stratification in number of days for the individual species.

Species-cold period	Control	2% Smoke	5% Smoke	10% Smoke	Smoke paper
(days)	(%)	(%)	(%)	(%)	(%)
C. bicknellii (0)	1.25	2.50	1.88	1.88	1.25
C. bicknellii (30)	18.13	14.38	8.75	3.13	27.50
C. bicknellii (60)	48.75	45.63	34.38	18.75	50.00
C. bicknellii (90)	40.00	51.88	45.00	10.00	58.75
C. blanda (0)	0.00	0.00	0.00	0.00	0.00
C. blanda (30)	6.25	11.25	4.38	4.38	8.13
C. blanda (60)	3.75	1.25	1.88	3.13	2.50
C. blanda (90)	11.25	7.50	1.88	1.88	8.75
C. cryptolepis (0)	0.00	0.00	0.00	0.00	0.00
C. cryptolepis (30)	0.00	0.00	0.00	0.00	0.00
C. cryptolepis (60)	0.00	0.00	0.00	0.00	0.00
C. cryptolepis (90)	0.00	0.00	0.00	0.00	0.00
C. comosa (0)	0.00	0.00	0.00	0.00	0.00
C. comosa (30)	0.00	0.00	0.00	0.00	0.00
<i>C. comosa</i> (60)	0.00	0.00	0.00	0.00	0.00
C. comosa (90)	0.00	0.63	1.25	0.63	0.00
C. crinite (0)	0.00	0.00	0.00	0.00	0.00
C. crinita (30)	0.00	0.00	0.00	0.00	0.00
C. crinita (60)	0.00	0.00	0.00	0.00	0.00
C. crinita (90)	0.00	0.00	0.00	0.00	0.00
C. frankii (0)	0.00	0.00	0.00	0.00	0.00
C. frankii (30)	1.25	1.88	0.00	1.25	4.38
C. frankii (60)	3.13	3.75	5.63	1.88	5.63
C. frankii (90)	1.25	3.75	4.38	1.88	8.13
C. haydenii (0)	0.00	0.00	0.00	0.00	0.00
C. haydenii (30)	1.25	0.63	0.00	1.25	1.25
C. haydenii (60)	5.00	2.50	1.88	0.00	4.38
C. haydenii (90)	1.25	1.25	1.88	1.88	1.88
C. pensylvanica (30)	12.50	6.25	2.50	0.00	12.50
C. pensylvanica (60)	15.00	6.25	4.38	1.25	15.63
C. pensylvanica (90)	5.63	5.63	3.13	1.25	15.00
C. vulpinoidea (0)	5.00	0.63	0.63	1.25	6.88
C. vulpinoidea (30)	93.75	95.00	86.25	53.13	95.00
C. vulpinoidea (60)	91.88	97.50	88.75	76.25	95.63
C. vulpinoidea (90)	93.13	97.50	93.75	86.25	96.25

Additional reading

Guo, Y., Zheng, Z., La Clair, J.J., Chory, J., and Noel, J.P. (2013). Smoke-derived karrikin perception by the α/β -hydrolase KAI2 from *Arabidopsis*. Proc. Natl. Acad. Sci. U.S.A. *110* (*20*), 8284–8289 https://doi.org/10.1073/pnas.1306265110. PubMed

Krock, S., Smith, S., Elliott, C., Kennedy, A., and Hamman, S.T. (2016). Using smoke-water and cold-moist stratification to improve germination of native prairie species. Native Plants J. 17 (1), 19–27 https://doi.org/10.3368/npj.17.1.19.